Identification of a novel region of the GABA(B2) C-terminus that regulates surface expression and neuronal targeting of the GABA(B) receptor.

نویسندگان

  • A M Pooler
  • A G Gray
  • R A J McIlhinney
چکیده

GABA(B) is a G protein-coupled receptor composed of two subunits, GABA(B1) and GABA(B2). GABA(B1) contains an endoplasmic reticulum-retention sequence and is trafficked to the cell surface only in association with GABA(B2). To determine whether the C-terminus of GABA(B2) regulates GABA(B) trafficking, we constructed forms of GABA(B2) with various C-terminal truncations and examined their surface expression. Truncation of GABA(B2) after residue 841 significantly reduced surface expression of both the subunit and the heterodimerized receptor. Turnover of the Delta841 construct, however, did not differ from that of full-length GABA(B2). To determine whether the C-terminus of GABA(B2) might target GABA(B) to neurites, cultured hippocampal neurons were transfected with the truncated GABA(B2) constructs. Truncation of GABA(B2) at residue 841 resulted in primarily somatic localization; furthermore, axonal trafficking of this construct was significantly more restricted than dendritic trafficking. Finally, to biochemically assess trafficking of the truncated GABA(B2) constructs, we digested transfected HEK293 cell lysates with endoglycosidase H. When GABA(B2) was truncated at residue 841, it became sensitive to digestion by this enzyme, indicating incomplete trafficking. Taken together, these data show that the region of the GABA(B2) C-terminus between residues 841 and 862 is important for regulating forward trafficking and neuronal targeting of the GABA(B) receptor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subtype-selective interaction with the transcription factor CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) regulates cell surface expression of GABA(B) receptors.

The metabotropic gamma-aminobutyric acid, type B (GABA(B)) receptors mediate the slow component of GABAergic transmission in the brain. Functional GABA(B) receptors are heterodimers of the two subunits GABA(B1) and GABA(B2), of which GABA(B1) exists in two main isoforms, GABA(B1a) and GABA(B1b). The significance of the structural heterogeneity of GABA(B) receptors, the mechanism leading to thei...

متن کامل

Effects of central amygdala GABA-B on expression of morphine-induced sensitivity in female rats

Introduction: Dependence on morphine and its complications are considered as a major health problem in the world; however, efforts to overcome this problem have failed due to the severity of drug dependence. Amygdala core nucleus (CeA) is one of the most important areas affecting the effects of morphine rewards. The GABAergic system in this nucleus; especially the GABAB receptors plays an impor...

متن کامل

GABAB receptor constituents revealed by tandem affinity purification from transgenic mice.

GABA(B) receptors function as heterodimeric G-protein-coupled receptors for the neurotransmitter gamma-aminobutyric acid (GABA). Receptor subtypes, based on isoforms of the ligand-binding subunit GABA(B1), are thought to involve a differential set of associated proteins. Here, we describe two mouse lines that allow a straightforward biochemical isolation of GABA(B) receptors. The transgenic mic...

متن کامل

P-84: Characterization of Androgen Receptor Structure and Nucleocytoplasmic Shuttling of the Rice Field Eel

Background: Androgen receptor (AR) plays a critical role in prostate cancer and male sexual differentiation.Mechanisms by which AR acts and regulations of AR nucleocytoplasmic shuttling are not understood well. Materials and Methods: Degenerate PCR and RACE Cloning of AR Gene; Phylogenetic Analysis and Molecular Modeling;Real-time Fluorescent Quantitative RT-PCR; Northern Blot Hybridization;In ...

متن کامل

GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus

Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European journal of neuroscience

دوره 29 5  شماره 

صفحات  -

تاریخ انتشار 2009